MHz) § 14.4, 18.6, 20.2, 28.4, 40.5, 43.0, 45.5, 58.8, 59.7, 63.6, 64.7, 108.1, 111.2, 147.5, 173.2; MS (EI), m/e (relative intensity) 268 (4), 253 (2), 241 (1), 223 (6), 200 (3), 195 (6), 154 (15), 139 (48), 113 (100), 99 (16), 86 (66); IR (neat) 1725 and 1645 cm⁻¹; GC $t_{\rm R}$ 20.17. Anal. Found: C, 67.14; H, 9.01.

Acknowledgment. This investigation was supported by Grant 24056 from the National Cancer Institute, DHHS. Purchase of the high-field NMR instrument was made possible by NSF Grant CHE 79-26027.

Condensation of 2,4-Diamino-6(1H)-pyrimidinone with 2-(Aminomethylene)cyclopentanone¹

Edward C. Taylor* and Stephen R. Fletcher

Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Received January 5, 1984

Interest in annulated 5-deazapteridines (pyrido[2,3-d]pyrimidines) as potential inhibitors of dihydrofolate reductase and thymidylate synthetase prompted us to reinvestigate the structure of the product arising from the condensation of 2,4-diamino-6(1H)-pyrimidinone with 2-(aminomethylene)cyclopentanone, a reaction described in 1973 by Stark and Breitmaier.² At that time it could not be determined by these authors whether the product possessed the 5.6-annulated structure 1 or the 6.7-annulated isomeric structure 2. Following the conditions de-

scribed by Stark and Breitmaier, we obtained a compound whose physical characteristics corresponded precisely with those previously described. The same compound could be obtained by using 2-[(dimethylamino)methylene]cyclopentanone instead of the aminomethylene derivative. By an independent and unequivocal synthesis, we have been able to show that this compound does not possess structure 1 but is instead the 6,7-annulated isomer 2.

Thus, treatment of 1-pyrrolidinocyclopentene with ethyl (chloromethylene)cyanoacetate³ in the presence of 1 equiv of triethylamine at -20 °C in methylene chloride gave the alkylated enamine 4, which was converted in high yield to the primary enamine 5 with ethanolic ammonia. Ring closure to 6 was then effected by treatment with a catalytic amount of sodium ethoxide in ethanol under reflux for 12 h. Although the usual conditions for pyrimidine annulation of o-amino esters with guanidine failed with 6, we were

able to convert 6 to 2 by reaction with benzoyl isothiocyanate to give 7, which was then S-methylated with methyl iodide/sodium hydride/DMF to 8. Aminolysis of 8 then gave 2.4 which was identical in every respect with the compound prepared by the procedure of Stark and Breitmaier.²

Since we have also shown by an unequivocal and independent synthesis that condensation of 2,4-diamino-6-(1H)-pyrimidinone with 1-[4-tert-butoxycarbonyl)phenyl]-3-(aminomethylene)-4-piperidinone gives a linear pyrido[2,3-d]pyrimidine analogous to $2,^5$ it seems probable that all of the cycloalkeno-5-deazapteridines described by Stark and Breitmaier² possess 6,7-annulated structures.⁶

Experimental Section

1-(Pyrrolidino)-2-(2-carbethoxy-2-cyanoethylene)cyclopentene (4). Ethyl (chloromethylene) cyanoacetate³ (4.65 g, 0.0365 mol) in 10 mL of methylene chloride was added dropwise to a solution of 5 g (0.0365 mol) of 1-pyrrolidinocyclopentene and 5 mL (0.0365 mol) of triethylamine in 100 mL of methylene chloride cooled to -20 °C. After addition was complete (10 min), the reaction mixture was stirred for 1 h and warmed to room temperature, and 10 mL of water was added. The organic phase was separated, dried (MgSO4), and evaporated to give a red solid which was triturated with ethanol. Filtration then gave 4.6 g (48%) of 4 as yellow crystals, mp 153-154 °C.

Anal. Calcd for C₁₅H₂₀N₂O₂: C, 69.23; H, 7.69; N, 10.77. Found: C, 69.14; H, 7.57; N, 10.51.

2-Amino-3-carbethoxy-5,6-trimethylenepyridine (6). A suspension of 2.0 g of 4 in 25 mL of saturated ethanolic ammonia was stirred at room temperature for 96 h, and the resulting precipitate of 5 was collected by filtration and recrystallized from acetic acid: yield 1.35 g (88%), mp 323-324 °C. Ring closure was then effected by heating 0.6 g of 5 for 18 h in 20 mL of ethanol

⁽¹⁾ We are indebted to the National Cancer Institute, National In-(2) Stark, E.; Breitmaier, E. Tetrahedron 1973, 29, 2209.
(3) Josey, A. D.; Dickinson, C. L.; Dewhirst, K. C.; McKusick, B. C. J. Org. Chem. 1967, 32, 1940.

⁽⁴⁾ For another application of this procedure for the conversion of an o-amino ester to a fused 2-amino-4(3H)-pyrimidinone, see: Lewis, A. F.; Townsend, L. B. J. Am. Chem. Soc. 1982, 104, 1073.

⁽⁵⁾ Taylor, E. C.; Skotnicki, J. S.; Fletcher, S. R. J. Org. Chem., submitted for publication.

⁽⁶⁾ In footnote a to Table III (see ref 2), Stark and Breitmaier wrote that "Aufgrund neuerer Messungen der ¹³C-¹H Kopplungskonstanten an den Cycloalkeno-5-deszapteridinen und analogen Verbindungen ist nicht auszuschliessen, dass die Zuordnung der ¹³C-Signale von C-5 und C-7 in Abb. 2 und den Tab. 4-6 umzukehren ist. Dementsprechend wäre der Cycloalkenring in den Verbindungen 12-14 und 17-21 linear, d.h. in 6,7-Stellung des 5-Desezapteridins ankondensiert". A linear structure was later confirmed for the condensation product of 4-aminouracil with 2-(hydroxymethylene)- 5α -dihydrotestosterone (Bouchon, G.; Stark, E.; Pech, H.; Breitmaier, E. Chem. Ztg. 1973, 97, 509). We thank Prof. Breitmaier for drawing our attention to this latter paper.

containing a catalytic amount (0.1 g) of sodium ethoxide. Evaporation of the reaction mixture and chromatography of the residue on silica using ether as the eluent gave 0.23 g (38%) of 6 as colorless crystals, mp 121-122 °C after recrystallization from cyclohexane.

Anal. Calcd for $C_{11}H_{14}N_2O_2$: C, 64.08; H, 6.80; N, 13.59. Found: C, 64.17; H, 6.93; N, 13.65.

6,7-Trimethylene-5-deazapterin (2-Amino-6,7-trimethylene-4(3H)-pyrido[2,3-d]pyrimidinone) (2). Method A. A mixture of 0.5 g (0.0024 mol) of the o-amino ester 6 and 0.5 g (0.0029 mol) of benzoyl isothiocyanate in 25 mL of acetonitrile was heated under reflux for 2 h. Filtration then gave 0.51 g (56%) of the benzoylthiourea derivative 7. This compound (0.36 g, 0.001 mol) was added in one portion to a slurry of 0.05 g of 60% sodium hydride/mineral oil in 10 mL of DMF, and the mixture was stirred at room temperature for 1 h. Methyl iodide (0.2 mL) was then added, and the mixture was stirred again for 1 h. The solvent was removed by evaporation under reduced pressure, and the residual S-methylated thiourea derivative 8 was suspended in 20 mL of saturated ethanolic ammonia and heated in a sealed glass tube at 120 °C for 2 h. The contents of the tube were then cooled and filtered to give 0.05 g (15% based upon 6) of 2: mp >250 °C; IR (Nujol) 3400-2300, 1710, 1675, 1600 cm⁻¹; NMR $(TFA-d_1 + Me_4Si) \delta 2.3-2.75 (m, 2 H), 3.3 and 3.5 (2t, 4 H, J =$ 6 Hz), 8.9 (s, 1 H).

Method B. A mixture of 2.78 g (0.018 mol) of 2-[(dimethylamino)methylene]cyclopentanone⁷ and 1.89 g (0.015 mol) of 2,4-diamino-6(1H)-pyrimidinone in a mixture of 30 mL of water and 45 mL of acetic acid containing 1 drop of piperidine was heated under reflux for 2 h. The yellow precipitate which had separated was collected by filtration, washed with water, methanol, acetone, and ether, and dried at 100 °C (0.1 mm) for 4 h; yield 2.1 g (69%). This compound was identical in every respect with 2 prepared by method A and also identical with the condensation product of 2,4-diamino-6(1H)-pyrimidinone with 2-(aminomethylene)cyclopentanone, prepared as described by Stark and Breitmaier.

Registry No. 1, 49739-08-4; 2, 91159-00-1; 3, 7148-07-4; 4, 91159-01-2; 5, 91159-02-3; 6, 68708-34-9; 7, 91159-03-4; 8, 91159-04-5; ClCH=C(CN)CO2Et, 78872-04-5; PhCONCS, 532-55-8; 2,4-diamino-6(1H)-pyrimidinone, 56-06-4; 2-[(dimethylamino)methylene]cyclopentanone, 62041-55-8; 2-(aminomethylene)cyclopentanone, 42997-61-5.

(7) Abdulla, R. F.; Fuhr, K. H. J. Org. Chem. 1978, 43, 4248.

Synthesis and Carbon-13 NMR of an Unusual Tricyclic Barbituric Acid Derivative[†]

Wayne J. Brouillette,* Joyce D. Friedrich, and Donald D. Muccio

Department of Chemistry, University of Alabama in Birmingham, Birmingham, Alabama 35294

Received February 28, 1984

Bicyclic imides of the type illustrated in general structure 1 are of interest because they belong to a class of

anti-Bredt bridgehead nitrogen amides.¹ These compounds were first proposed as potential stereoselective anticonvulsants by E. E. Smissman, whose synthetic ef-

forts²⁻¹¹ revealed that structures with n = 1 were very resistant to formation. For example, despite numerous attempts by Smissman to prepare 1a (n = 1) or analogues,⁶⁻⁸ the only reported success⁶ was for the preparation of methoxy-substituted bicyclic barbiturate 4 using the procedure illustrated in Scheme I. Surprisingly, similar synthetic approaches involving intermediates without the methoxy group, such as 5 in Scheme I, did not yield 1a. Our interest² in these systems prompted us to repeat Smissman's synthesis of 4. Here we report that the structural assignments for 4 and the immediate synthetic precursor 3 are incorrect, and we provide NMR evidence which shows that the correct structures are novel cyclized barbituric acid derivatives containing the amide acetal functionality.

Results and Discussion

5-Allyl-5-phenylbarbituric acid (2, Scheme I) was prepared from 5-phenylbarbituric acid according to the procedure of Vorm and Siegfried.¹² The ¹H and ¹³C NMR assignments for 2 are presented in Table I and are consistent with the assigned structure. The reaction of 2 with Br₂ and CH₃OH according to the procedure of Smissman⁶ produced a crystalline product that was identical in every respect (mp, IR, and ¹H NMR in CF_3CO_2H - d_1) to that reported as 3. Furthermore, the electron-impact mass spectrum gave the anticipated molecular ion at m/e 356 and confirmed the presence of one bromine. However, the ¹H NMR spectrum of 3 run in Me₂SO- d_6 (shown as compound 6 in Table I) displayed two types of N-H resonances

(1) Hall, H. K., Jr.; El-Shekeil, A. Chem. Rev. 1983, 83, 549.

- (2) Brouillette, W. J.; Smissman, E. E.; Grunewald, G. L. J. Org. Chem. 1979, 44, 839.
- (3) Smissman, E. E.; Matuszack, A. J.; Corder, C. N. J. Pharm. Sci. 1964, 53, 1541.

(4) Smissman, E. E.; Robinson, R. A. J. Org. Chem. 1970, 35, 3532. (5) Smissman, E. E.; Chien, P. L.; Robinson, R. A. J. Org. Chem. 1970, 35, 3818.

- (6) Smissman, E. E.; Robinson, R. A.; Carr, J. B.; Matuszack, A. J. B. J. Org. Chem. 1970, 35, 3821.
- (7) Smissman, E. E.; Robinson, R. A.; Matuszack, A. J. B. J. Org. Chem. 1970, 35, 3823.
- (8) Smissman, E. E.; Ayres, J. W. J. Org. Chem. 1971, 36, 2407.
 (9) Smissman, E. E.; Ayres, J. W. J. Org. Chem. 1972, 37, 1092.
 (10) Smissman, E. E.; Ayres, J. W.; Wirth, P. J.; Abernathy, D. R. J. Org. Chem. 1972, 37, 3486.
 - (11) Smissman, E. E.; Wirth, P. J. J. Org. Chem. 1975, 40, 1576.

(12) Vorm, A. G.; Siegfried, B. Swiss Patent 151 516, Dec 24, 1930; Chem. Abstr. 1930, 26, P48289.

[†]Dedicated to the memory of Prof. E. E. Smissman.